

Team: sdmay23-16
Client/Adviser: Berk Gulmezoglu

Team Members/Roles:
Liam Anderson / Internal Logic Member

Kevin Lin / Machine Learning Lead
Shi Yong Goh / Internal Logic Member

Felipe Bautista / UI Lead
Connor McLoud / OS Lead

Eduardo Robles / Internal Logic Member

Team Email: sdmay23-16@iastate.edu
Team Website: http://sdmay23-16.sd.ece.iastate.edu/

Revised: December 2nd, 2022/1.0

Robustness of
Microarchitecture Attacks/

Malware Detection Tools
against Adversarial Artificial

Intelligence Attacks
DESIGN DOCUMENT

Development Standards & Practices Used
Software Development Life Cycle

IEEE 12207: This standard provides processes that can be employed for defining, controlling, and
improving software life cycle processes within an organization or a project.

IEEE 1074: This standard provides a process for creating a software project life cycle process
(SPLCP), and it is primarily directed at the process architect for a given software project.

Software Testing

IEEE 29119: This is a series of five standards for software testing. They define vocabulary,
processes, documentation, techniques, and a process assessment model for testing that can be
used within any software development lifecycle.

Summary of Requirements

Functional Requirements

• Generate adversarial examples for all provided attack codes

• Adversarial examples successfully perform the attack while under the following
constraints:

o Score below 20% detection certainty

o Never exceeding 2x normal power consumption

o Attack speed doesn’t exceed 5x slower data leak rate than its non-evasive
counterpart

UI Requirements

• The software must feature a user-friendly graphical user interface with the following
features and functions:

o Define an attack type

o Upload datasets and a machine learning model

o Upload attack source code

Executive Summary

o Select between different detection models

o Launch evasive power-mimicking attacks

Applicable Courses from Iowa State University Curriculum
Courses at Iowa State whose content applies to this project:

• CPR E 381: Computer Organization and Assembly Level Programming

• CPR E 308: Intro to Operating Systems

• ENGL 314: Technical Communications

• COM S 309: Software Development Practices

• CPR E 185: Intro to Computer Engineering and Problem Solving

• CPR E 230: Cybersecurity Fundamentals

• COMS 474: Intro to Machine Learning

New Skills/Knowledge acquired that was not taught in courses
New skills or knowledge needed for this project:

• x86 Assembly

• Machine Learning

• Scripting Languages (Bash, Python, etc.)

• MATLAB

Table of Contents
1.	 Team 6	..

1.1	 TEAM MEMBERS 6	...

1.2	 REQUIRED SKILL SETS FOR YOUR PROJECT 6	...

1.3	 SKILL SETS COVERED BY THE TEAM 6	..

1.4	 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 6	..

1.5	 INITIAL PROJECT MANAGEMENT ROLES 6	...

2.	 Introduction 7	..

2.1	 PROBLEM STATEMENT 7	..

2.2	 REQUIREMENTS & CONSTRAINTS 7	...

2.2.1	 FUNCTIONAL REQUIREMENTS 7	...

2.2.2	 UI REQUIREMENTS 7	...

2.2.3	 RESOURCE REQUIREMENTS 8	..

2.3	 ENGINEERING STANDARDS 8	..

2.4	 INTENDED USERS AND USES 8	...

2.4.1	 RESEARCHERS 8	...

2.4.2	 IMPLEMENTORS 9	..

2.4.3	 END USERS 9	...

3 Project Plan 9	..

3.1 Project Management/Tracking Procedures 9	...

3.2 Task Decomposition 10	..

3.2.1 First Semester 10	..

3.2.2 Second Semester 10	...

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 11	...

3.4 Project Timeline/Schedule 12	...

3.4.1 Fall 2022 Schedule 12	..

3.4.2 Spring 2023 Schedule 13	...

3.5 Risks and Risk Management/Mitigation 13	...

3.6 Personnel Effort Requirements 14	..

3.7 Other Resource Requirements 16	...

4 Design 16	..

4.1 Design Context 16	...

4.1.1 Broader Context 16	..

4.1.2 Prior Work/Solutions 16	..

4.1.3 Technical Complexity 17	...

4.2 Design Exploration 18	..

4.2.1 Design Decisions 18	..

4.2.2 Ideation 19	..

4.2.3 Decision-Making and Trade-Off 19	...

4.3	 Proposed Design 20	..

4.3.1 Overview 20	...

4.3.2 Detailed Design and Visual(s) 21	..

4.3.2.1 Overview 21	...

4.3.2.2 User Interface 22	..

4.3.2.3 Inputs 22	...

4.3.2.4 Instruction Insertion Logic 22	..

4.3.2.5 Attack Logic 22	..

4.3.2.6 Outputs 22	..

4.3.3 Functionality 23	...

4.3.4 Areas of Concern and Development 24	..

4.4 Technology Considerations 24	..

4.5 Design Analysis 25	...

5 Testing 25	..

5.1 Unit Testing 25	..

5.2 Interface Testing 26	...

5.3	 Integration Testing 27	...

5.4	 System Testing 27	..

5.5	 Regression Testing 27	...

5.6	 Acceptance Testing 28	..

5.7	 Results 28	...

6 Implementation 29	..

7 Professional Responsibility 31	...

7.1	 Areas of Responsibility 31	..

7.2 Project Specific Professional Responsibility Areas 33	...

7.3 Most Applicable Professional Responsibility Area 34	..

8 Closing Material 34	...

8.1 Discussion 34	...

8.2 Conclusion 35	..

8.3 References 35	...

8.4 Appendix 35	..

8.4.1 Team Contract 35	...

List of Figures
Figure 1: Fall Gantt Chart 12...

Figure 2: Spring Gantt Chart 13..

Figure 3: Overview of Power-anomaly Detector System 17..

Figure 4: Lotus Blossom 19..

Figure 5: Detailed Design Overview 21..

Figure 6: Functionality Graph 23..

Figure 7: Testing Diagram 29..

List of Tables
Table 1: Task Time Requirements 15	..

Table 2: Weighted Decision Matrix 20	...

Table 3: Testing Coverage 29	...

Table 4: Area of Responsibility 32	..

Table 5: Professional Responsibility Areas 34	...

1. Team

1.1. TEAM MEMBERS

Liam Anderson

Kevin Lin

Shi Yong Goh

Felipe Bautista

Connor McLoud

Eduardo Robles

1.2. REQUIRED SKILL SETS FOR YOUR PROJECT

This project requires a wide variety of skills to complete. Knowledge of the Ubuntu operating
system and bash is necessary to work with the provided systems for collecting and analyzing
data. Assembly level and C programming skills are needed to work with provided attack codes
and to create adversarial attacks. The project also requires us to work with machine learning
models, so knowledge in that area and python is necessary. Lastly, this project is centered around
microarchitecture vulnerabilities and compromising information systems, so a background in
cybersecurity is helpful.

1.3. SKILL SETS COVERED BY THE TEAM

1. Ubuntu OS experience: Kevin, Connor, Felipe, and Eduardo

2. Cybersecurity background: Liam

3. Machine Learning knowledge: Kevin

4. Assembly level programing: All members

5. C programming language: All members

6. Python: All members

7. Bash: All members

1.4. PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Our team will use a hybrid development process to manage the project. For many tasks we must
follow the waterfall process and other areas of the project will follow the agile process.

1.5. INITIAL PROJECT MANAGEMENT ROLES

• Client Interaction: Shi Yong

• Team Organization: Kevin

• Testing: Felipe Bautista Salamanca, Connor McLoud

• Individual Component Design: Eduardo Robles, Liam Anderson

2. Introduction

2.1. PROBLEM STATEMENT

In a technology centric world, cybersecurity is crucial to ensuring consumer privacy of
information. Some microarchitecture-based malware attacks cannot be detected using current
existing software – causing a breach of security and loss of privacy. Major chip manufacturers and
cloud computing providers need a way to identify and differentiate these attacks from benign
signals in order to ensure consumer privacy. These attacks can happen at any given time, making
it difficult to identify them consistently and accurately. Thus, our team is creating a software tool
that can assess the robustness of an AI based detector against microarchitecture attacks. This will
allow companies to strengthen and improve their own software to better detect and quarantine
said attacks.

2.2. REQUIREMENTS & CONSTRAINTS

2.2.1. FUNCTIONAL REQUIREMENTS

The software our team will develop will assess the robustness of security systems that attempt to
detect microarchitecture attacks. The robustness will be measured by its ability to detect
microarchitecture attacks specially designed to evade detection. The software will generate these
evasive adversary attacks by inserting artificial noise into the attack instructions to mimic benign
power signatures and exploit the security system’s underlying machine-learning model.

Five microarchitecture attack codes will be provided, and all five attacks must be able to execute
without detection and without significantly slowing down the attack. The security system cannot
report any higher than 20% detection certainty for the attack to be undetected. The power usage
should not exceed 2x normal activity, and the attack should not surpass a 5x slower data leak rate
than its non-evasive counterpart.

2.2.2. UI REQUIREMENTS

Our team's program will feature a simple and user-friendly graphical user interface (GUI). The
interface must allow users to do the following tasks:

1. Define the attack type

2. Include the data sets they used.

3. Upload the application's source code used to train the model

4. Upload attack source code

5. Select between different detection models

6. Run evasive power-mimicking attacks

After running an attack, the GUI must display statistics about the attack, including the data leak
rate in bits per second and the security systems malware detection certainty for the selected
model as a percentage.

2.2.3. RESOURCE REQUIREMENTS

The project will require specialized hardware to pull the necessary CPU power consumption data
and achieve the performance needed to run the AI-based microarchitecture attack detector. Our
team will be provided and required to use the following experimental setup:

• Intel Comet Lake Microarchitecture

o CPU Model: Intel(R) Core (TM) i7-10610U CPU @ 1.80GHz

o OS: Ubuntu 20.04 LTS

o Linux Kernel: 5.11.0-46-generic

• Server Information

o Nvidia GeForce RTX 3090 GPU

o CPU Model: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz

2.3. ENGINEERING STANDARDS

Software Development Life Cycle

IEEE 12207: This standard provides processes that can be employed for defining, controlling, and
improving software life cycle processes within an organization or a project.

IEEE 1074: This standard provides a process for creating a software project life cycle process
(SPLCP) and it is primarily directed at the process architect for a given software project.

Software Testing

IEEE 29119: This is a series of five standards for software testing. They define vocabulary,
processes, documentation, techniques, and a process assessment model for testing that can be
used within any software development lifecycle.

2.4. INTENDED USERS AND USES

2.4.1. RESEARCHERS

Researchers focusing on microarchitecture attacks will use our tool to test and further research
power-anomaly detection systems.

Key Characteristics

Researchers are the leaders in developing and further exploring microarchitecture vulnerabilities
and security solutions. They have a vast knowledge of computer engineering and system
security. They are more concerned with the pursuit of knowledge and development of theory
than they are with implementing solutions for economic reasons.

Needs

Researchers need a better way to test new microarchitecture attacks against their deep learning
power-anomaly detection systems. They must validate that their security systems hold up against
evasive microarchitecture attacks.

How they will benefit

With the tool our team is developing, researchers can quickly generate new, highly evasive
microarchitecture attacks. Saving them a lot of time implementing it themselves and providing
them with the tools they need to test their systems.

2.4.2. IMPLEMENTORS

Implementors, such as Intel, AMD, Nvidia, and PaaS providers, will use our tool to test their
systems against microarchitecture attacks.

Key Characteristics

Implementors are companies that manufacture chipsets or provide access to computer resources.
Vulnerabilities in their products can damage their reputation and be very costly, so they tend to
invest heavily in cybersecurity.

Needs

Implementors need a tool to test their products and discover potential vulnerabilities.

How they will benefit

Implementors will be able to conduct penetration testing on their products with evasive
microarchitecture attacks and, as a result, discover existing vulnerabilities.

2.4.3. END USERS

End users indirectly benefit by trusting their data with systems tested by our tool.

Key Characteristics

End users are typical everyday computer users. They don’t have much knowledge of
cybersecurity or the inner workings of the system they are using, and they trust the product they
use is secure.

Needs

End users need their data to be secure. They need their personal computer or cloud environment
not to be vulnerable to microarchitecture attacks.

How they will benefit

End users can be assured that their private information is secured and inaccessible to non-
authorized individuals. They can also have better protection on their personal devices and as well
as their cloud environments.

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our team plans to adopt a hybrid development process to manage our project. Since some tasks
depend on one another, it is necessary to follow the waterfall process to meet the requirements of
these tasks. Our project has a unique feature in that each task must be done for each one of the
attacks we are modifying. This feature allows us to work in parallel by assigning an attack to each
member. Doing so allows us to work simultaneously on the same tasks for each attack. By doing
this, we follow an agile process that would allow our team to tackle various tasks at the same
time, which will save us time.

The team will use GitHub for version control and Notion to keep track of assigned tasks and due
dates. We have a Kanban board on Notion and will follow the Gantt chart to ensure we’re on
track.

3.2 TASK DECOMPOSITION

3.2.1 First Semester

Task 1: Become familiar with attack codes and test system

Task 1A: Understand the necessary Ubuntu scripts and test systems configuration

Task 1B: Collect power measurements/model power signatures

Task 1C: Modify attack codes to extract data leak rate & collect detection accuracy

Task 1D: Understand each attack’s atomic instructions & possible areas to insert code

Task 2: Implement UI with basic functionality

Task 2A: Set up python environment and UI foundation

Task 2B: Create necessary functions

Task 2C: Implement command line interface

Task 2D: Design a graphical user interface

Task 2E: Test UI

3.2.2 Second Semester

Task 3: Analyze power signatures, instructions' power consumption, and evasive attacks

Task 3A: Analyze differences in malicious and benign power signatures

Task 3B: Attempt to mimic benign power signatures by inserting instructions

Task 3C: Profile and record x86 instruction's effects on power consumption

Task 4: Implement basic instruction insertion and attack logic

Task 4A: Develop instruction insertion structure with instruction’s power signature
dataset and code insertion functions

Task 4B: Develop attack structure with ammeter synchronization, code execution, and
attack analysis functions.

Task 4C: Test functionality

Task 5: Leverage NLP and CNN AI techniques to create adversarial examples (2 months)

Task 5A: Develop ML models

Task 5B: Implement model into instruction insertion logic

Task 6: Finalize project

Task 6A: Add additional functions to the GUI

Task 6B: Final testing

Task 6C: Fix any minor issues

Task 6D: Wrap-up Documentation

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Milestone 1: Understand the attacks

The team should be able to collect the power measurements of the model. Understand where
instructions can be added/removed from the attack code to reduce detection. Be able to calculate
the leakage rate and detection accuracy.

 Milestone 2: Completed UI

The UI should allow the user to upload an attack code, a detection model, and a data set. The
user should be able to select the type of attack as well as run and end the attack. Once the attack
is executed, the UI should display the detection rate, the average leak rate (bytes/sec), and the
total bytes leaked.

Milestone 3: Complete 3 different attack codes

The team should have a completed Spectre, Row Hammer, and Port Smash attack. The ML model
confidence rate should be below 20% after including instructions in each attack.

Milestone 4: Deliver the project to client

The GUI is updated with any changes that were made throughout development. Any final
modifications of the attack codes should be made.

3.4 PROJECT TIMELINE/SCHEDULE

3.4.1 Fall 2022 Schedule

Figure 1: Fall Gantt Chart

We assigned Tasks 1 and 2 to be finished by the end of the semester. Having a strong
understanding of the attack codes is crucial to developing/modifying them. If we have the GUI
finished by Spring semester, testing will be much more efficient in later tasks.

Both tasks can be worked on in parallel – knowledge of the attack isn’t necessary to complete the
GUI. Task 1 has few overlaps since all of them build on each other. Task 2 allows for more overlap
since the subtasks can be worked on simultaneously.

3.4.2 Spring 2023 Schedule

Figure 2: Spring Gantt Chart

We have already begun Task 3: analyzing power signatures, power consumption, and evasive
attacks. It is necessary to analyze the benign and malicious power signatures.

Tasks 3B and 3C can be done simultaneously after testing and analyzing the additional
instructions that affect the power signatures. Task 4 and 5 is where the attack codes start
development. The team will be split to allow both to be done at the same time. Task 6 is where the
team finishes up the project. Here the team will allocate resources to complete the project at the
same time.

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Low Risk: Team Members are unable to finish work by the assigned deadline.

• Probability of occurring: high (70%)

• Mitigation: Clear communication with team members so that duties can be transferred
and delegated, if necessary, to finish work by the deadline.

Moderate Risk: An attack code has a detection rate higher than 20%

• Probability of occurring: moderate (50%)

• Mitigation: allocate more time into analyzing the benign application’s power
consumption.

Moderate Risk: Leakage rate may be difficult to calculate

• Probability of occurring: moderate (40%)

• Mitigation: Spend more time researching the attack code.

High Risk: Two people run an attack at the same time (will cause incorrect data for both attacks)

• Probability of occurring: low (15%)

• Mitigation: Communicate when one starts and ends an attack.

High Risk: Row hammer attack may crash the system resulting in needing a new ram.

• Probability of occurring: low (5%)

• Mitigation: Have a good understanding of the attack and carefully implement it.

High Risk: Inability to analyze and understand power samples from ammeter

• Probability of occurring: low (5%)

• Mitigation: Ask for assistance if unable to understand the power consumption graphs

3.6 PERSONNEL EFFORT REQUIREMENTS

Tasks Total number of person-
hours

Justification

Task 1: Become
familiar with attack
codes and test
system

150 hours Task 1A: Understand the necessary Ubuntu
scripts and test systems configuration (All
members, 6 hours each)

Task 1B: Collect power measurements/
model power signatures (All members, 3
hours each)

Task 1C: Modify attack codes to extract data
leak rate & collect detection accuracy (All
members, 8 hours each)

Task 1D: Understand each attack’s atomic
instructions & possible areas to insert code
(All members, 8 hours each)

Task 2: Implement
UI with basic
functionality

120 hours Task 2A: Set up python environment and UI
foundation (three members, 2 hours each)

Task 2B: Create necessary functions (three
members, 18 hours each)

Task 2C: Implement command line interface
(three members, 9 hours each)

Task 2D: Design a graphical user interface
(three members, 8 hours each)

Task 2E: Test UI (three members, 3 hours
each)

Task 3: Analyze
power signatures,
instructions' power
consumption, and
evasive attacks

240 hours Task 3A: Analyze differences in malicious
and benign power signatures (All members,
8 hours each)

Task 3B: Attempt to mimic benign power
signatures by inserting instructions (All
members, 16 hours each)

 Task 3C: Profile and record x86 instruction's
effects on power consumption (All
members, 16 hours each)

Table 1: Task Time Requirements

3.7 OTHER RESOURCE REQUIREMENTS

The project will require specialized hardware to pull the necessary CPU power consumption data
and achieve the performance needed to run the AI-based microarchitecture attack detector. Our
team will be provided and required to use the following experimental setup:

• Intel Comet Lake Microarchitecture

o CPU Model: Intel(R) Core (TM) i7-10610U CPU @ 1.80GHz

o OS: Ubuntu 20.04 LTS

Task 4: Implement
basic instruction
insertion and attack
logic

168 hours Task 4A: Develop instruction insertion
structure with instruction’s power signature
dataset and code insertion functions (three
members, 22 hours each)

 Task 4B: Develop attack structure with
ammeter synchronization, code execution,
and attack analysis functions (three
members, 25 hours each)

 Task 4C: Test functionality (three members,
9 hours each)

Task 5: Leverage
NLP and CNN AI
techniques to create
adversarial
examples

168 hours Task 5A: Develop ML models (three
members, 30 hours)

Task 5B: Implement model into instruction
insertion logic (three members, 26 hours
each)

Task 6: Finalize
project

60 hours Task 6A: Add additional functions to the
GUI

Task 6B: Final testing (all members, 4 hours
each)

Task 6C: Fix any minor issues (all members,
3 hours each)

Task 6D: Wrap-up Documentation (all
members, 3 hours each)

Total 906 hours Finish

o Linux Kernel: 5.11.0-46-generic

• Server Information

o Nvidia GeForce RTX 3090 GPU

o CPU Model: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

The tool our team is developing is designed for those in academia researching machine learning
solutions to malware attacks. It will help test, evaluate, and strengthen malware detection
software to create more robust and secure systems and ultimately addresses the ever-growing
need for safe and reliable information technology.

In addition, this can be used to supplement existing software that chip manufacturers like AMD
and Intel can utilize.

Safety and Welfare

If we are not careful, our software can easily be used maliciously. Someone could use it to help
them get past a system's anti-malware protection system and compromise the machine, affecting
the confidentiality, integrity, and availability of the victim's data. We must keep this in mind
when making design choices so the software can only be used for research purposes. Some of
these design choices include not outputting the evasive attack code and only leaking designated
data

4.1.2 Prior Work/Solutions

Before we started designing our project, we read a research paper, “Using Power-Anomalies to
Counter Evasive Micro-Architectural Attacks in Embedded Systems”, published by the Department of
Electrical and Computer Engineering, The University of Texas at Austin.

Figure 3: Overview of Power-anomaly Detector System1

This research proposed a power-anomaly detector system (Figure 1), which is very similar to the
detection tool that we will create. This system provides an effective way to detect a range of
microarchitectural attacks: Spectre attacks, covert-channels and row hammer attacks. The
research demonstrates that power anomalies can reliably cut through the noise of diverse benign
programs to detect microarchitecture attacks in complex embedded systems. To model evasive
attackers, they introduce evasive, power-mimicking micro-architectural attacks that replicate
benign applications' power behavior while executing malicious tasks.

This power-anomaly detection can be used to defeat a particularly harmful and sophisticated
class of attacks. The pro of the detector system is it is easy to deploy. Hence, it does not require
expensive upgrades and can be strengthened to combat the class of attacks. But this system is
limited to certain types of attacks.

4.1.3 Technical Complexity

Since our project can be seen as a research project, it includes various scientific, mathematical, or
engineering principles. A big emphasis of our project is machine learning, which is a very
complex topic for all of us since many of us don’t have any prior background, which will require
us to do research to be more familiar with the topic. Another key feature of the project is the
various types of micro-architectural attacks we will examine and modify.

The goal of the project is to make changes to these given attacks for them to disguise themselves
from the detection models. Our team needs to understand how these attacks exploit different

 Wei, Shijia & Aysu, Aydin & Orshansky, Michael & Gerstlauer, Andreas & Tiwari, Mohit. (2019). Using 1

Power-Anomalies to Counter Evasive Micro-Architectural Attacks in Embedded Systems. 111-120.
10.1109/HST.2019.8740838.

weaknesses before modifying them, so we don’t change the attack logic by accident when making
changes to the source code. When it comes to modifying the attacks, it is essential for us to have
good knowledge of C and assembly code. Since all the attacks will be written in these languages,
any modification will also be required using the existing source code.

Assembly language can be tricky since it varies within the architecture of the system you are
working on. Since the environment we are working on requires knowledge of x86 assembly code,
our team needs to learn and understand this assembly language.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

1. Implementing a GUI in python

a. Choosing a specific language is important to get everyone on the same page.

b. Python is the language the team has the most experience in. This means less time
is being spent on learning a new programming language.

2. Attack codes will all be in C

a. The team was supplied template C code on certain attacks. Analyzing and
building off the templates would speed up the process of development.
Translating the existing code into another language would be unnecessary and
take too much time.

3. All assembly instructions will be in x86

a. We will be trying to attack an Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz to test
our attacks. This CPU is known to use assembly x86.

4.2.2 Ideation

Figure 4: Lotus Blossom

We decided to use the Lotus Blossom ideation technique to narrow down which language was
best suited for our attack codes.

4.2.3 Decision-Making and Trade-Off

There were 3 main factors when we decided the language of the attack codes: experience,
execution speed, and help from advisor. Experience had a higher weight because the level of
experience we have in a language determines the speed of development. Execution speed also
plays a role in ensuring the results of the attack return quickly. This project is new territory for
most of the team so being able to get help from the advisor would ensure the team has a good
understanding of the project.

Below is a weighted decision matrix of the 5 potential languages for the attack code. D, Rust, and
Lua scored very low because no one in the group had any experience with the languages. C was
the best choice because the entire group has worked with it in previous classes. The advisor gave
a recommendation to use C and provided a lot of help getting started on the project.

Table 2: Weighted Decision Matrix

3. PROPOSED DESIGN

4.3.1 Overview

Our software will offer a graphical user interface (GUI) or command line interface (CLI) for the
user to interact with the application. Navigating the interface, the user can upload attack codes
and select a detection model and attack type, which is fed into the instruction insertion algorithm.
The algorithm then generates an evasive attack that exploits the detection system's underlying
machine learning (ML) model. Running the attack with the program will generate statistics about
the attack.

4.3.2 Detailed Design and Visual(s)

Figure 5: Detailed Design Overview

4.3.2.1 Overview

Our system primarily lives in a python environment. Currently, there exists a machine learning
model that can differentiate between malignant and benign code that is available. Our job is to
find ways to lower the model’s detection certainty to below 20% - if possible.

Users are provided with a GUI and CLI to access the functionality of the software that we will be
writing. Users can upload attack source code by navigating the interface and selecting the attack
type and detection model. This is fed into the instruction insertion logic, which generates the
attack code, but is modified to attempt to avoid the selected machine learning model’s detection.
Running that attack with the program would create statistics about the attack, including data
leaked, certainty, and leakage rate.

4.3.2.2 User Interface

We provide clients with a GUI as well as a CLI, both with the same functionality. Clients can
interact with our application through it. They can input models and attack types/codes to
receive, and output, which is displayed after the machine learning model analyzes it. This is
output to the console/GUI with detection certainty, data leaked, and leakage rate.

4.3.2.3 Inputs

The inputs that are available for the client to put in consist of the attack type, attack code, and
detection model. The attack source codes will either be C files or x86 assembly.

4.3.2.4 Instruction Insertion Logic

All the inputs are fed into another algorithm that is compared with the power reading dataset.
This generates attack source code that is meant to subserve the selected mode. It then compiles
the code and sends this into the attack logic block.

4.3.2.5 Attack Logic

After running the code, it determines whether the code was malware and outputs its certainty
percentage and various statistics. This is done by reading the power usage of the computer as the
attack is running and looking for any abnormalities that have already been quantified in the
machine learning model.

4.3.2.6 Outputs

All this info will be outputted on the CLI or GUI for the client to view.

4.3.3 Functionality

Figure 6: Functionality Graph

Our design consists of using the UI as a way for the user to interact with the system as well as to
receive information. As shown in the image above the user can select and add unique inputs to
the system that fits their needs. These inputs are selecting which attack the trained model is
looking for, the source code of the attack the user is testing, the data set used, and lastly, selecting
which trained model the user wants to test the attack on. Once the user has inputted all these
paraments, then can go ahead and run the analysis.

The microarchitecture will run the code and output the rate at which the attack leaked the data as
well as the total amount of data that was leaked. This information will be sent to the UI where the
user can get those results. After the code was run, the system will then go ahead a collect the
power measurements generated by the uploaded attack on the microarchitecture. These
measurements will be sent to the server along with the data set of power measurements
generated by the selected attack type. The detection model will run an analysis and output a
certainty level on the match between the data set given by the user and the uploaded attack

power measurements collected. If the power measurement matches the power measurements of
the selected attack it would result in a higher certainty. This result would also be sent to the UI
where the user can see the result of the analysis.

4.3.4 Areas of Concern and Development

Based on our design, the users are required to upload the attack source code, select a detection
model, and define the attack type to run the analysis. The result must meet the project
requirements, especially the detection certainty and leakage rates.

One of the concerns is that the tool might not be able to achieve the desired detection rate (20%).
We will need to use different methods to optimize the ML model and allocate more time to
analyzing the benign application’s power consumption.

Besides that, the leakage rate may be difficult to calculate. We will need assistance from the
graduate TA to help us understand better how to calculate the leakage rate and spend more time
researching the attack code.

We are also concerned about whether users might upload a wrong attack source file to cause the
tool to terminate or freeze. We will add some functions/error handlers to make the tool display
an error message on the GUI.

4.4 TECHNOLOGY CONSIDERATIONS

Python:

• Strengths:

o Simplicity makes it easy to use for AI/ML applications.

o Platform independent and versatile.

o Good library/module ecosystem.

• Weaknesses:

o Slow execution due to Python being an interpreted language.

o High memory consumption.

• Alternatives:

o Scala, C/C++

Attack Code in C:

• Strengths:

o Extremely fast execution and compilation

o Low level language, making it easy to program machine level hardware.

o Well used language in the team.

• Weaknesses:

o No run time checking – all errors handled after writing the program.

o No exception handling.

o Manual memory management,

• Alternatives:

o Rust

Intel x86 Assembly:

• Strengths:

o One of the most popular ISA (instruction set architecture) today

o Targets the devices that the attack source codes are meant for

• Weaknesses:

o Steep learning curve

• Alternatives:

o RISC V, ARM

4.5 DESIGN ANALYSIS

As the end of the semester approaches, we were able to successfully finish the milestones that we
set for fall semester. We have begun implementing the GUI, pending minor adjustments, and our
team is familiarized with the Ubuntu environment and attack source codes for the Spectre attack.

Current plans are still to continue analyzing power measurements and see if there is a way to
make the Spectre attack more obvious and clearer.

Our proposed design is being implemented in chunks and will eventually be put together.

5 Testing

5.1 UNIT TESTING

Our team’s software internal logic is comprised of two units, instruction insertion unit (IIU) and
attack unit (AU).

Instruction Insertion Unit (IIU)

The IIU takes in an attack type, source code, and detection system and outputs an evasive attack.
It’s responsible for leveraging an instruction insertion algorithm and instruction power signature
dataset to insert x86 instructions into the provided attack source code to create an undetectable
microarchitecture attack.

Early in developing the IIU, we will first test its basic functionality of inserting instructions. We
will see if, provided any arbitrary C source code, it can adequately insert the correct x86
instructions in the right location without breaking the program. This will be done using a python
script which will call the insertion function with various inputs, receive the source output,
compare it with the expected value, and compile and test-run the program for errors. After any
changes to the unit, we will test it by running the script.

Later in the project, once the instruction power signatures have been collected and the algorithm
has been developed, we will test the unit’s ability to identify the instructions and locations
needed to create an evasive power signature. This manual effort will require us to provide the
unit with our attack codes, make the changes suggested by the unit, run the evasive attacks, and
analyze the power signatures with MATLAB scripts and the detection system. We can confirm
that it is working correctly by the evasive attack not getting detected and if its attack speed has
not significantly slowed down.

Attack Unit (AU)

The AU is responsible for properly executing the attack and collecting statistics about the attack.
The testing for this unit will be simple. Again, it will use a Python script to call the unit with
various attack inputs and see if it operates as expected. We want to see that the unit runs an
attack a given number of times with the given amount of space between them, and it collects the
amount of data leaked and how long each attack takes to execute.

5.2 INTERFACE TESTING

User Interface

Our team's program will feature a simple and user-friendly graphical user interface (GUI). The
interface will allow users to do the following tasks:

• Define the attack type

• Include the data sets they used.

• Upload the application's source code used to train the model

• Upload attack source code

• Select between different detection models

• Run evasive power-mimicking attacks

After running an attack, the GUI must display statistics about the attack, including the data leak
rate in bits per second and the security systems malware detection certainty for the selected
model as a percentage.

UI Testing

• Data Type Errors & Error Logging

o We plan to test each one of the input fields and make sure each one of the
methods handles data type errors correctly as well as to make sure it is logging
any errors it encounters. Each method will be tested by using unit testing and
testing different scenarios where different input will be passed on each method
and check if the outcome is as expected.

• UI Component Testing

o All fields, labels, buttons, and other items on the screen will be tested to make
sure they are functioning as desired.

• Screen Response Testing

o We will be checking screen controls such as colors, fonts, sizes, icons, and others
to see how they respond to user’s inputs. Make sure each place is easy on the eye
of the user and also to provide an easy experience to the user while using the UI.

• Navigation Elements Testing

o We will be testing navigation tools such as scroll bars and navigation bars to
ensure smooth transitions while navigating the page, and refresh rate of the
page.

• Output Testing

o We will test the output given back to users to meet the requirements we set on
our UI requirements.

3. INTEGRATION TESTING

Instruction Insertion Unit / Attack Unit Integration

Integration between the IIU and AU is crucial as they make up the two parts of the internal logic.
The output of the IIU directly feeds into AU, and hidden errors with the IIU might not be known
until it reaches the AU. Testing this integration is very similar to testing the AU and IIU. A python
script will provide the IIU with various attack codes and check for correctness. It will see if:

• The attack runs the appropriate number of times without any errors

• The correct statistics are outputted

• The attack runs undetected

• The attack speed is not significantly slowed down

UI / Internal Logic Integration

The UI / internal logic integration joins the two main parts of the application together. Testing
will consist of navigating the UI, calling UI functions, and testing their behavior and outputs with
expected values. Like most of the tests, this will be done with a Python script, but manual effort
will be involved with navigating the UI to ensure everything is connected correctly. We expect to
see the following:

• Importing source files works as expected

• Selecting a detection model successfully loads the internal machine-learning model and
data sets

• Attacks successfully run with the selected type

• All statistics are shown correctly

• Each button pressed successfully calls all the necessary parts of the application.

4. SYSTEM TESTING

System testing will be very similar to the UI / internal logic integration testing, with the main
difference being that we will also check if we meet all the functional requirements. These tests
will use previously developed testing python scripts and manual efforts of going through each
attack code and seeing if we are meeting the requirements. The system test will check to see if:

• All attack codes are executed below the detection certainty of 20%

• Power usage never exceeds 2x normal activity

• No attack exceeds a 5x slower data leak rate compared to its unaltered version

5. REGRESSION TESTING

Almost all tests use Python scripts to check for correctness and can be efficiently run when
changes are made. Before any group member pushes their changes, they will run a master testing
script that performs all developed tests to ensure nothing is broken.

6. ACCEPTANCE TESTING

User Acceptance Testing (UAT):

Our clients will test the detection tool to determine whether it is working for the users correctly
and expected.

Expected:

• Client able to download the tool and run the tool on their devices.

• All the buttons on the tool should work on client’s site.

• All files can be uploaded.

• When finishing the task, the results should display on the tool.

• All the functionalities fulfil the clients’ needs.

• Client able to run the tool multiple times without any unexpected errors.

• The power usage should not exceed 2x normal activity, and the attack should not surpass
a 5x slower data leak rate on the user's side

Test procedure:

• Clients will download the tool on their devices.

• Client will upload different sources files to run the tool.

• Clients will use different attack types to run.

• Client will evaluate the correctness of the tool.

7. RESULTS

Figure 7 maps areas of our design to each test and Table 3 shows what area each test evaluates.
Testing will be crucial in ensuring that our design works and our attack modifications help to
evade the machine learning model. By testing the various attacks, we know that our testing
works modularly. When we eventually combine these together into the algorithm, we know that
any issues that occur are due to the algorithm, not the separate attacks. This concludes that our
design is useful.

Figure 7: Testing Diagram

Table 3: Testing Coverage

6 Implementation
Our team has taken the initiative and we have begun implementing the UI as well as getting
familiar with the attack codes and the testing environment this semester. We decided to split the
team into two groups to focus on the two main tasks we wanted to accomplish before next
semester.

Group 1: Connor and Felipe

• Task: Implement UI with basic functionality

o Set up python environment and UI foundation

o Create necessary functions

o Implement command line interface

o Design a graphical user interface

o Create communication between User Interface and Intel Comet Lake
Microarchitecture device via SSH

o Create communication between User Interface and detection Model server via
SSH

o Test UI

Group 2: Liam, Kevin, Eduardo, and Shi Yong

• Task: Become familiar with attack codes and test system

o Understand the necessary Ubuntu scripts and test systems configuration

o Collect power measurements/model power signatures

o Modify attack codes to extract data leak rate & collect detection accuracy

o Understand each attack’s atomic instructions & possible areas to insert code

Since we are working with a basic UI, we estimated it could be implemented this semester. The
UI would also be very beneficial for us to have done early on the development since it would
automate a lot of the manual work, like collecting power signatures and well as running attacks
on the environment. As for getting familiar with the attacks and system, it is very important for
our team to learn everything about the provided resources by our client such as the attacks code
and system environment. By learning everything about our project it would prevent future
roadblocks in the implementation next semester.

Implementation Plan for Next Semester

Our first task for next semester is to analyze our power signatures, instructions' power
consumption, and evasive attacks. After testing and learning more about our various attack’s
atomic structures, we were able to identify areas in the source code where we could insert
meaningful x86 instructions. We will then be able to profile and record their effects on power
consumption to then decide which x86 instructions create the most noise when analyzing the
power signature graphs.

Additionally, we will need to implement our UI in a user-friendly way that allows ease of access
when establishing a remote connection to our ML model server. This is achieved on our end

using SSH and terminal. The GUI should securely maintain this connection while allowing the
user to upload attack code, execute the attack, and collect the resulting data signatures. Once the
user has finished interacting with the model and has collected the power consumption data, they
may safely end the connection.

7 Professional Responsibility

1. AREAS OF RESPONSIBILITY

Area of
Responsibility

Definition NSPE IEEE

Work Competence Perform work of high
quality, integrity,
timeliness, and
professional
competence.

Perform services only
in areas of their
competence; avoid
deceptive acts.

To maintain and
improve our technical
competence and to
undertake
technological tasks
for others only if
qualified by training
or experience, or after
full disclosure of
pertinent limitations;

Financial
Responsibility

Deliver products and
services of realizable
value and at
reasonable costs.

Act for each
employer or client as
faithful agents or
trustees.

None

Communication
Honesty

Report works
truthfully, without
deception, and
understandable to
stakeholders.

Issue public
statements only in an
objective and truthful
manner; avoid
deceptive acts.

To avoid real or
perceived conflicts of
interest whenever
possible, and to
disclose them to
affected parties when
they do exist;

Health, Safety, and
well-being

Minimize risks to
safety, health, and
well-being of
stakeholders.

Hold paramount the
safety, health, and
welfare of the public.

to hold paramount
the safety, health, and
welfare of the public

Table 4: Area of Responsibility

Work Competence - You should only take work that you can manage based on your background
and skillset. This would help improve and maintain our technical competence. IEEE and NSPE
here see this area with the same scope as it tells you to focus on areas you are good at within your
project.

Property Ownership Respect property,
ideas, and information
of clients and others.

Act for each
employer or client as
faithful agents or
trustees.

To seek, accept, and
offer honest criticism
of technical work, to
acknowledge and
correct errors, to be
honest and realistic in
stating claims or
estimates based on
available data, and to
credit properly the
contributions of
others;

Sustainability Protect the
environment and
natural resources
locally and globally.

None To strive to comply
with ethical design
and sustainable
development
practices, to protect
the privacy of others,
and to disclose
promptly factors that
might endanger the
public or the
environment;

Social Responsibility Produce products and
services that benefit
society and
communities.

Conduct themselves
honorably,
responsibly, ethically,
and lawfully so as to
enhance the honor,
reputation, and
usefulness of the
profession.

To improve the
understanding by
individuals and
society of the
capabilities and
societal implications
of conventional and
emerging
technologies,
including intelligent
systems;

Financial responsibility - IEEE didn't address any financial responsibility but I think we should
make decisions that would benefit the customer financially but also not impact the quality of the
product we are making.

Communication honesty - It is important to always communicate with our team to avoid any
conflicts from developing any further and try to find a solution for them as soon as possible. IEEE
and NSPE focus on different aspects of communication honesty as one is more focused on
making sure teams are communicating constantly while the other focuses more talking to with
the public such as customer or investors.

Health, Safety, Well-Being - Make sure all the made decisions are beneficiary to the public health
and safety of others. IEEE and NSPE talk about the same idea in this area.

Property Ownership - Make sure you are willing to accept criticism when needed. Also
acknowledge any error made you and be willing to fix them.

Sustainability - Make sure you are using sustainable practices that would mitigate danger to the
public or the environment.

Social Responsibility - Make sure you are helping society understand the capabilities of new
emerging technologies.

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

Area of
Responsibility

Definition Context to our
project

Performance

Work Competence Perform work of high
quality, integrity,
timeliness, and
professional
competence.

Work competence is
applicable because
our group is trying to
deliver a quality
project.

High- Our team has
proven good work on
all the reports. All
deadlines have been
met.

Financial
Responsibility

Deliver products and
services of realizable
value and at
reasonable costs.

There is little to no
cost for the
development of this
project making it not
applicable.

Not applicable- We
haven’t talked about
finance in the group.

Table 5: Professional Responsibility Areas

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

Work competence is the team’s most applicable responsibility area. It is very important that
everyone on the team contributes their own quality work to the project. Failure results in setting
the group back, potentially missing the deadline, or delivering a poorly made product. As stated
above the team has done a good job in delivering quality work and meeting deadlines. The team
has been able to communicate with the client to gain better understanding

Communication
Honesty

Report work
truthfully, without
deception, and
understandable to
stakeholders.

Being truthful with
the client is very
helpful to get more
information. Our
team depends on it
make progress on the
project.

High- We have been
honest with the client
and in return we get
good feedback on the
project.

Health, Safety, and
well-being

Minimize risks to
safety, health, and
well-being of
stakeholders.

This would be
applicable since it has
applications on future
microarchitectures.

Medium- We are still
researching the
project.

Property Ownership Respect property,
ideas, and information
of clients and others.

This area applicable
because our project
could harm the
hardware of the
user’s device. We are
careful not to cause
damages.

Low- The code that
could damage a
device hasn’t been
implemented.

Sustainability Protect the
environment and
natural resources
locally and globally.

Our project doesn’t
affect the
environment so it
would not be
applicable.

Not applicable- The
project doesn’t
involve the
environment.

Social Responsibility Produce products and
services that benefit
society and
communities.

This area is
applicable because it
is going to improve
the security of future
computers.

Medium- The team
has completed the
design but is still
working on the
implementation.

8 Closing Material

8.1 DISCUSSION

Throughout the semester the team has been working on analyzing the attack code to see its effect
on the device’s power consumption. Through testing we were able to improve the method of
collecting power consumption data. This modification will lower the total power used to collect
the data; in addition, it made it easier to read the data graphs. The GUI for the project is also in
development.

8.2 CONCLUSION

This past semester, our team has nearly finished the GUI for the application, as well as
understanding the attack source codes and environment that we’ll be working in.

The GUI is being developed using Python and the PyQt6 library. To connect the GUI to the laptop
and server, we will create various Bash scripts that will handle connection to each device via SSH.
The scripts will handle any request of the user: running the attack and collecting power
measurements in tandem.

In terms of understanding the attack source code, our team has begun collecting power
measurements. Using the power measurements collected, our team is utilizing MATLAB to graph
the data. By doing so, we can understand the behavior of the laptop when benign code is running
vs malicious code. To do so, the team is modifying the original source code by inserting various
x86 instructions and comparing it with the original attack. This will provide us with a baseline of
figuring out what instructions most mask the attack.

The team has a couple of goals for this project: finish documentation and design of our product,
begin implementation, and create a working GUI to supplement the product.

To best achieve our goals, we decided on having team weekly meetings in addition to our weekly
meetings with our client. This was necessary to help us stay on track and on the right path at
times during the development of our project. This would help our team from running into
obstacles during our design and implementation process.

Initially, our team struggled to understand the full scope of our project. This prevented us from
starting development and design for a couple of weeks. After meeting with our advisor multiple
times, we have all gained a good understanding of the project. As we did this past semester,
asking questions and having a clear line of communication is key to a successful project.

8.3 REFERENCES

Research Papers

S. Wei, A. Aysu, M. Orshansky, A. Gerstlauer and M. Tiwari, "Using Power-Anomalies to Counter
Evasive Micro-Architectural Attacks in Embedded Systems," 2019 IEEE International Symposium

on Hardware Oriented Security and Trust (HOST), 2019, pp. 111-120, doi: 10.1109/
HST.2019.8740838.

P. Kocher et al., "Spectre Attacks: Exploiting Speculative Execution," 2019 IEEE Symposium on
Security and Privacy (SP), 2019, pp. 1-19, doi: 10.1109/SP.2019.00002.

8.4 APPENDIX

8.4.1 Team Contract

Team Members:

• Shi Yong Goh

• Connor McLoud

• Felipe Bautista Salamanca

• Kevin Lin

• Eduardo Robles

• Liam Anderson

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:

a. We will meet twice weekly. Sunday virtually through a Webex meeting at 2:00
PM and Wednesday in person at 4:15 PM.

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g., e-
mail, phone, app, face-to-face):

a. For communication, we utilize email, Discord, and Webex.

3. 3. Decision-making policy (e.g., consensus, majority vote):

a. The majority vote system will be used to make decisions when necessary.

4. 4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes
be shared/archived):

a. After every meeting one team member will be responsible for recording minutes
spent in the meeting.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:

a. All members are expected to show up to meetings on time unless prior notice has
been given.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

a. Team members are responsible for delivering their assignments by the specified
deadline.

3. Expected level of communication with other team members:

a. All team members are required to always communicate any project related
updates with the rest of the team.

4. Expected level of commitment to team decisions and tasks:

a. Team members should be responsible for their decided tasks and commit to them
unless in case of unforeseen circumstances.

Leadership

1. Leadership roles:

a. Client Interaction: Shi Yong

b. Team Organization: Kevin

c. Testing: Felipe Bautista Salamanca, Connor McLoud

d. Individual Component Design: Eduardo Robles, Liam Anderson

2. Strategies for supporting and guiding the work of all team members:

a. Participating in the discussions.

b. Friendly check-in on status.

3. Strategies for recognizing the contributions of all team members:

a. Discussion during weekly meetings(check-ins). Things done the prior week,
things to do the upcoming week, etc.

Collaboration and Inclusion

1. Skills, expertise, and unique perspectives:

a. Shi Yong Goh: Python, C programming, Java, C#, Android Studio, Linux/Unix,
Applied Math to program, Debugging skill.

b. Connor McLoud: Unix, Shell scripting, Software Testing, C, C#, C++, Java,
JavaScript, Python, Databases, Machine Processing, Graphic Design
Programming, Network Security, Operating Systems, Android, Algorithms

c. Felipe Bautista Salamanca: C, C++, Python, Java, JavaScript, SQL, mySQL,
Ladder Programing, Scripting, Data Science, Linux/Unix, Mobile Development,
Software Testing

d. Kevin Lin: Linux/Unix, Artificial Intelligence, Python, Java, Spring, SQL, C/C+
+, Scripting.

e. Eduardo Robles: Java, C, Python, Unix

f. Liam Anderson: Unix, Java, JavaScript, C, Python, VHDL, Network security,
software security, penetration testing

2. Strategies for encouraging and supporting contributions and ideas from all team
members:

a. Discussing with our advisor, allowing everyone to speak up at group meetings
and have input.

3. Procedures for identifying and resolving collaboration or inclusion issues:

a. In the case of the team environment obstructing their ability to contribute, team
members are encouraged to relay their concerns in Discord or in weekly
meetings. Team members can reach out to the advisor or Dr. Fila with concerns if
necessary.

Goal setting, Planning, and Execution

1. Team goals for this semester:

a. Our team’s goal for this semester is to finish documenting and designing a tool
that can create and analyze artificial noise and begin implementing this tool.

2. Strategies for planning and assigning individual and teamwork:

a. To help with planning and organizing project tasks we will use Notion to assign
and keep track of weekly tasks and progression.

3. Strategies for keeping on task:

a. To stay on talk we will use our weekly meetings as a tool to check on everyone's
progression. Assigned tasks should be finished or otherwise communicated.

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

a. We will handle infractions by having a team discussion and attempt to solve the
issue as a team first.

2. What will your team do if the infractions continue?

a. If we are unable to solve the issue ourselves, we will escalate it to Dr. Fila/
advisor for assistance.

a) I participated in formulating the standards, roles, and procedures as stated in this contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) Connor McLoud DATE: 9/18/2022

2) Liam Anderson DATE: 9/18/2022

3) Felipe Bautista Salamanca DATE: 9/18/2022

4) Eduardo Robles DATE: 9/18/2022

5) Shi Yong Goh DATE: 9/18/2022

6) Kevin Lin DATE: 9/18/2022

	Team
	Introduction
	Problem Statement
	3 Project Plan
	3.1 Project Management/Tracking Procedures
	3.2 Task Decomposition
	3.2.1 First Semester
	3.2.2 Second Semester

	3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria
	3.4 Project Timeline/Schedule
	3.4.1 Fall 2022 Schedule
	3.4.2 Spring 2023 Schedule

	3.5 Risks and Risk Management/Mitigation
	3.6 Personnel Effort Requirements
	3.7 Other Resource Requirements

	4 Design
	4.1 Design Context
	4.1.1 Broader Context
	4.1.2 Prior Work/Solutions
	4.1.3 Technical Complexity

	4.2 Design Exploration
	4.2.1 Design Decisions
	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-Off

	Proposed Design
	4.3.1 Overview
	4.3.2 Detailed Design and Visual(s)
	4.3.2.1 Overview
	4.3.2.2 User Interface
	4.3.2.3 Inputs
	4.3.2.4 Instruction Insertion Logic
	4.3.2.5 Attack Logic
	4.3.2.6 Outputs
	4.3.3 Functionality
	4.3.4 Areas of Concern and Development

	4.4 Technology Considerations
	4.5 Design Analysis

	5 Testing
	5.1 Unit Testing
	5.2 Interface Testing
	Integration Testing
	System Testing
	Regression Testing
	Acceptance Testing
	Results

	6 Implementation
	7 Professional Responsibility
	Areas of Responsibility
	7.2 Project Specific Professional Responsibility Areas
	7.3 Most Applicable Professional Responsibility Area

	8 Closing Material
	8.1 Discussion
	8.2 Conclusion
	8.3 References
	8.4 Appendix
	8.4.1 Team Contract

